Congruences

1 The congruence relation

The notion of congruence modulo \(m \) was invented by Karl Friedrich Gauss, and does much to simplify arguments about divisibility.

Definition. Let \(a, b, m \in \mathbb{Z} \), with \(m > 0 \). We say that \(a \) is **congruent to** \(b \) **modulo** \(m \), written

\[
a \equiv b \pmod{m},
\]

if \(m \mid (a - b) \). We call \(m \) a **modulus** in this situation. If \(m \nmid (a - b) \) we say that \(a \) is **incongruent to** \(b \) **modulo** \(m \), written

\[
a \not\equiv b \pmod{m}.
\]

Example.

- \(m = 11 \). We have \(-1 \equiv 10 \pmod{11}\), since \(11 \mid (-1 - 10) = -11\). We have \(108 \not\equiv 7 \pmod{11}\) since \(11 \nmid (108 - 7) = 101\).

- \(m = 2 \). When do we have \(a \equiv b \pmod{2} \)? We must have \(2 \mid (a - b)\). In other words, \(a - b\) must be even. This is true iff \(a\) and \(b\) have the same **parity**: i.e., iff both are even or both are odd.

- \(m = 1 \). Show that for any \(a\) and \(b\) we have \(a \equiv b \pmod{1}\).

- When do we have \(a \equiv 0 \pmod{m} \)? This is true iff \(m \mid (a - 0) \) iff \(m \mid a \). Thus the connection with divisibility: \(m \mid a \) iff \(a \equiv 0 \pmod{m} \).

Congruence is meant to simplify discussions of divisibility, and yet in our examples we had to use divisibility to prove congruences. The following theorem corrects this.

Theorem. Let \(a, b, m \in \mathbb{Z} \) with \(m > 0 \). Then \(a \equiv b \pmod{m} \) if and only if there is a \(k \in \mathbb{Z} \) such that \(b = a + km \).

Proof. We have \(a \equiv b \pmod{m} \) if and only if \(m \mid (a - b) \). By definition this is true iff there is a \(k \) such that \(a - b = km \), which is true iff \(a = b + km \) for some \(k \). \(\square \)

The previous theorem makes it an easy to task, given say an integer \(a\) and a modulus \(m\), to list all integers congruent to \(a\) modulo \(m\). Just take the set \(\{a + km : k \in \mathbb{Z}\} \).

Example. Take \(m = 3 \).

- The set of all integers congruent to 0 modulo 3 is \(\{0 + k3 : k \in \mathbb{Z}\} = \{\ldots, -6, -3, 0, 3, 6, 9, \ldots\} \).

- The set of all integers congruent to 1 modulo 3 is \(\{1 + k3 : k \in \mathbb{Z}\} = \{\ldots, -5, -2, 1, 4, 7, 10, \ldots\} \).

- The set of all integers congruent to 2 modulo 3 is \(\{2 + k3 : k \in \mathbb{Z}\} = \{\ldots, -4, -1, 2, 5, 7, 12, \ldots\} \).

2 Congruence classes

Congruence modulo \(m \) defines a binary relation on \(\mathbb{Z} \). One property that makes this such a useful relation is that it is an equivalence relation!

Theorem. Let \(m \in \mathbb{Z}^+ \) and consider the relation \(R_m \) defined by

\[
a R_m b \text{ if and only if } a \equiv b \pmod{m}.
\]

Then \(R_m \) is an equivalence relation.
(i) \(R_m \) is reflexive: for all \(a \in \mathbb{Z} \) we have \(a \equiv a \pmod{m} \).

(ii) \(R_m \) is symmetric: if \(a \equiv b \pmod{m} \), then \(b \equiv a \pmod{m} \).

(iii) \(R_m \) is transitive: if \(a \equiv b \pmod{m} \) and \(b \equiv c \pmod{m} \), then \(a \equiv c \pmod{m} \).

Proof. (i) Since \(m \mid (a - a) = 0 \), we have \(a \equiv a \pmod{m} \).

(ii) If \(m \mid (a - b) \), then \(m \mid (-1)(a - b) = (b - a) \). Thus \(a \equiv b \pmod{m} \) implies \(b \equiv a \pmod{m} \).

(iii) Suppose \(a \equiv b \pmod{m} \) and \(b \equiv c \pmod{m} \). Then by the previous theorem we can write \(b = a + km \) for some \(k \) and \(c = b + k'm \) for some \(k' \). But then \(c = b + k'm = a + km + k'm = a + (k + k')m \), and thus \(a \equiv c \pmod{m} \).

Since \(R_m \) is an equivalence relation, we can speak of its corresponding equivalence classes. These are called congruence classes.

Definition. Let \(m \) be a modulus. Given an integer \(a \), its congruence class modulo \(m \) is the set
\[
[a]_m := \{ x \in \mathbb{Z} : a \equiv x \pmod{m} \} = \{ a + km : k \in \mathbb{Z} \}.
\]

Example. Let \(m = 3 \). Then \([0]_3 = \{ \ldots, -3, 0, 3 \ldots \}, [1]_3 = \{ \ldots, -2, 1, 4 \ldots \}, [2]_3 = \{ \ldots, -1, 2, 5 \ldots \} \).

Why not consider \([3]_3\) in the last example? Because
\[
[3]_3 = \{ \ldots, -3, 0, 3, 6 \ldots \} = [0]_3.
\]

Similarly \([4]_3 = [1]_3\) and \([5]_3 = [2]_3\).

Comment.

• We see that congruence classes have many different “names”: \([1]_3 = [4]_3 = [-2]_3\). In fact we can show that for any element \(a \in [1]_3 \), we have \([1]_3 = [a]_3\).

• Apparently the three congruence classes \([0]_3, [1]_3, [2]_3\) are in fact all of the congruence classes modulo \(m \).

The following theorem confirms and expands upon these observations.

Theorem (Congruence Theorem). Let \(m \) be a modulus. Then:

(i) \([a]_m = [b]_m\) if and only if \(a \equiv b \pmod{m} \).

(ii) the collection of congruence classes \([a]_m\) form a partition of \(\mathbb{Z} \): i.e., distinct congruence classes are disjoint, and every element of \(\mathbb{Z} \) is contained in (exactly) one of the congruence classes.

(iii) In fact there are exactly \(m \) congruence classes, namely \([0]_m, [1]_m, \ldots, [m-1]_m\). Thus for each \(x \in \mathbb{Z} \), we have \(x \in [i]_m \) for exactly one \(i \) with \(0 \leq i \leq m - 1 \).

Proof.

(i)-(ii) The first two statements are true of any equivalence relation, so we get them for free! For example, the first follows from the fact that if \(R \) is an equivalence relation, then \([x]_R = [y]_R\) if and only if \(xRy \).

(iii) We need to show that \([i]_m \neq [j]_m\) for any \(i \neq j \) with \(i, j \in \{0, 1, \ldots, m-1\} \), and that for any \(a \in \mathbb{Z} \) we have \([a]_m = [i]_m\) for some \(i \in \{0, 1, \ldots, m-1\} \).

We can prove both in one fell swoop by showing that for all \(a \in \mathbb{Z} \) there is exactly one \(i \in \{0, 1, 2, \ldots, m-1\} \) such that \([a]_m = [i]_m\). (Think about this.) To do this, apply the division algorithm! This says there is one and only one \(r \in \{0, 1, \ldots, m-1\} \) such that \(a = qr + r \) for some \(q \). Then \(a \equiv r \pmod{m} \). By (i), this means that \([a]_m = [r]_m\), so we can choose \(i = r \). This choice is unique thanks to the uniqueness claim in the division algorithm.
The results of the Congruence Theorem (CT) give rise to some definitions.

Definition. Let m be a modulus. We saw that for any $a \in \mathbb{Z}$ there is a unique $r \in \{0, 1, \ldots, m - 1\}$ such that $a \equiv r \pmod{m}$ (or equivalently, $[a]_m = [r]_m$). We call r the least nonnegative residue of a and write $a \mod m = r$. (Note the bold print!)

Comment. Be careful not to confuse our two notions. To say that $a \equiv b \pmod{m}$ is to assert a certain relation holds between a and b, whereas $a \mod m$ is an honest to goodness number. In fact, the least nonnegative residue allows us to define a function $\mod m : \mathbb{Z} \to \{0, 1, \ldots, m - 1\}$, sending an integer $a \in \mathbb{Z}$ to $a \mod m \in \{0, 1, \ldots, m - 1\}$.

Example. Take $m = 5$. We have $23 \mod 5 = 3$, since $23 \equiv 3 \pmod{5}$. Similarly, we have $-97 \mod 5 = 3$, since $-97 \equiv 3 \pmod{5}$. This shows that in general the function $f(x) = x \mod m$ is not injective!

In fact we have the following description of the fibers of $f(x) = x \mod m$.

Corollary. Let m be a modulus. Then a $\mod m = b \mod m$ if and only if $a \equiv b \pmod{m}$. In other words, given $r \in \{0, 1, \ldots, m - 1\}$ the set of $x \in \mathbb{Z}$ such that $f(x) = x \mod m = r$ is the congruence class $[r]_m$.

Definition. Let m be a modulus. A set of m integers $\{r_1, r_2, \ldots, r_m\}$ whose congruence classes $[r_1]_m, \ldots, [r_m]_m$ exhaust all possible congruence classes is called a complete system of residues modulo m.

Example. Let $m = 3$ Then $\{0, 1, 2\}$ is a complete system of residues modulo 3, but so is $\{-3, 4, 5\}$ and $\{33, -29, 8\}$.

Theorem. Let m be a modulus, and let $r_1, r_2, \ldots r_m$ be integers. The following statements are equivalent.

(i) The r_i’s comprise a complete system of residues modulo m.

(ii) For all $a \in \mathbb{Z}$ there is a unique r_i such that $a \equiv r_i \pmod{m}$.

(iii) The r_i’s are pairwise incongruent; i.e., if $i \neq j$, then $r_i \neq r_j \pmod{m}$.