Discrete Logarithms: Exercises

1. Use the table of discrete logarithms from the lecture notes to compute the following:
 (a) \(\text{ind}_{10} 6 \pmod{29} \); \(\text{ind}_{10} 16 \pmod{29} \).

2. Use the table of discrete logarithms from the lecture notes to compute the following:
 (a) \(\text{ind}_2 10 \pmod{27} \); \(\text{ind}_2 16 \pmod{25} \).

3. Use the table of discrete logarithms to solve the following congruences:
 (a) \(3x^5 \equiv 1 \pmod{23} \); (b) \(4x^9 \equiv 23 \pmod{31} \).

4. Use the table of discrete logarithms to solve the following congruences:
 (a) \(2x^5 \equiv 13 \pmod{27} \); (b) \(4x^9 \equiv 14 \pmod{25} \).

5. Use the table of discrete logarithms to find all solutions to the following congruences:
 (a) \(3^x \equiv 2 \pmod{23} \); (b) \(13^x \equiv 6 \pmod{23} \).

6. Show that \(x^6 \equiv 5 \pmod{17} \) has no solution, by showing that 5 is not a 6th power residue modulo 17. Is the congruence \(2x^6 \equiv 10 \pmod{17} \) solvable?

7. Show that \(x^{15} \equiv 4 \pmod{71} \) has no solution, by showing that 4 is not a 15th power residue modulo 71.

8. Show that \(x^{15} \equiv 4 \pmod{81} \) has no solution, by showing that 4 is not a 15th power residue modulo 81.

9. Compile a list of all 4th power residues modulo 17.

10. Compile a list of all perfect squares in the ring \(\mathbb{Z}/17\mathbb{Z} \).

11. Find all solutions to \(x^x \equiv x \pmod{23} \).

12. Let \(p \) be an odd prime, and let \(r \) be a primitive root modulo \(p \). Show that \(\text{ind}_r (-1) = \text{ind}_r (p - 1) = (p - 1)/2 \).

13. Let \(p \) be an odd prime. Use the result of the preceding exercise to show that the congruence \(x^4 \equiv -1 \pmod{p} \) has a solution iff \(p \) is of the form \(8k + 1 \).

14. What is the converse of Fermat’s Little Theorem? Show that the converse of Fermat’s Little Theorem is false, by finding integers \(a, n \) such that \(a^{n-1} \equiv 1 \pmod{n} \) and \(n \) is composite.
15. (Lucas’s Converse to FLiT, 1876) Let \(n \) be a positive integer. Suppose that an integer \(x \) can be found such that \(x^{n-1} \equiv 1 \pmod{n} \) and \(x^{(n-1)/q} \not\equiv 1 \pmod{n} \) for every prime divisor \(q \) of \(n - 1 \). Prove that \(n \) must be prime. [Hint: Argue that \(\text{ord}_n x = n - 1 \), and thus that \(\varphi(n) = n - 1 \).]

16. Apply the result of the preceding exercise, with \(x = 11 \), to show that 1009 is prime.

17. Use Lucas’s Converse to FLiT to prove that if \(n \) is an odd positive integer and there is some integer \(x \) with \(x^{(n-1)/2} \equiv -1 \pmod{n} \) and \(x^{(n-1)/q} \not\equiv 1 \pmod{n} \) for all prime divisors \(q \) of \(n - 1 \), then \(n \) must be prime.

18. Use the result of the preceding exercise, with \(x = 5 \), to prove that 2003 is prime.

19. * (Proth’s Primality Test, 1878) If \(n \) has the form \(n = k2^m + 1 \) for positive integers \(k, m \) with \(k \) odd and \(k < 2^m \), and if there is some \(x \) such that \(x^{(n-1)/2} \equiv -1 \pmod{n} \) then \(n \) must be prime. Prove this.

20. Use the result of the preceding exercise, with \(x = 3 \), to prove that 3329 is prime.